Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xiao-Yang Qiu, ${ }^{\text {a,c* }}$ Qiu-Yan Luo, ${ }^{\text {b }}$ Sen-Lin Yang ${ }^{\text {a }}$ and Wei-Sheng Liu ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Chemistry, Fuyang Normal College, Fuyang Anhui 236041, People's Republic of China, ${ }^{\mathbf{b}}$ College of Chemistry \& Chemical Engineering, JingGangShan College, Ji'an 343009, People's Republic of China, and ${ }^{\text {c }}$ Department of Chemistry, Lanzhou University, Lanzhou 730000, People's Republic of China

Correspondence e-mail:
xiaoyang_qiu@126.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.035$
$w R$ factor $=0.102$
Data-to-parameter ratio $=10.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
(E)-2-Hydroxy- N^{\prime}-[1-(4-methoxyphenyl)ethylidene]benzohydrazide

The title molecule, $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$, adopts a trans configuration with respect to the $\mathrm{C}=\mathrm{N}$ double bond. The dihedral angle between the two rings is $47.2(3)^{\circ}$. The crystal structure is stabilized by intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, which link the molecules into a chain parallel to the b axis.

Comment

Recently, we have reported several Schiff base complexes (Qiu, Yang et al., 2006; Qiu, Ma et al., 2006). As an extension of our work on the structural characterization of Schiff base compounds, the title compound, (I), is reported here (Fig. 1).

In the title compound, (I), all bond lengths and angles are within normal ranges (Allen et al., 1987). The $\mathrm{C} 8=\mathrm{N} 2$ bond length of 1.277 (3) \AA conforms to the value for a double bond, while the $\mathrm{C} 7-\mathrm{N} 1$ bond $[1.337$ (2) \AA] is greater than the value for a double bond and less than the value for a single bond because of conjugation effects in the molecule. The dihedral angle between the benzene rings is $47.2(3)^{\circ}$.

In the crystal structure, the molecules are linked through weak intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming a chain parallel to the b axis (Table 1 and Fig. 2).

Experimental

The reagents were commercial products and were used without further purification. 1-(4-Methoxyphenyl)ethanone $(0.1 \mathrm{mmol}$,

Figure 1
The molecular structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. The dashed line indicates an intramolecular hydrogen bond.

Received 20 July 2006 Accepted 28 July 2006
15.0 mg) and 2-hydroxybenzohydrazide ($0.1 \mathrm{mmol}, 15.1 \mathrm{mg}$) were dissolved in ethyl acetate $(15 \mathrm{ml})$. The reaction mixture was heated at 393 K for 3 h with stirring. A white solid precipitated from the solution; this was dissolved in acetone (12 ml) and stirred for about 10 min to give a clear colourless solution. After allowing the solution to stand in air for 8 d , colourless block-shaped crystals formed at the bottom of the vesssl on slow evoporation of the solvent. They were collected, washed three times with acetone and dried in a vacuum desiccator using CaCl_{2}. The compound was isolated in 53% yield.

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$
$M_{r}=284.31$
Orthorhombic, $P_{2} 2_{1} 2_{1} 2_{1}$
$a=7.4007(15) \AA$
$b=11.794(2) \AA$
$c=16.290(3) \AA$
$V=1421.8(5) \AA$

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.328 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.09 \mathrm{~mm}^{-1} \\
& T=298(2) \mathrm{K} \\
& \text { Block, colourless } \\
& 0.26 \times 0.12 \times 0.07 \mathrm{~mm}
\end{aligned}
$$

Data collection

Bruker SMART APEX areadetector diffractometer

ω scans

Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.984, T_{\text {max }}=0.991$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.035$
$w R\left(F^{2}\right)=0.102$
$S=1.03$
1992 reflections
193 parameters
H -atom parameters constrained

10760 measured reflections 1992 independent reflections 1341 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.030$ $\theta_{\text {max }}=28.2^{\circ}$

$$
\begin{aligned}
& w= 1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0368 P)^{2}\right. \\
&+0.1085 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.12 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.12 \mathrm{e}^{-3}
\end{aligned}
$$

Extinction correction: SHELXL97
Extinction coefficient: 0.008 (2)

Table 1
Hydrogen-bond geometry ($\mathrm{A}^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1-H1 \cdots O1	0.86	1.93	$2.603(2)$	134
O1-H1 \cdots O $^{\mathrm{i}}$	0.82	1.77	$2.573(2)$	168

Symmetry code: (i) $-x+2, y-\frac{1}{2},-z+\frac{1}{2}$.

All H atoms were placed in geometrically idealized positions ($\mathrm{O}-$ $\mathrm{H}=0.82 \AA, \mathrm{~N}-\mathrm{H}=0.86 \AA$ and $\mathrm{C}-\mathrm{H}=0.93$ or $0.96 \AA$) and constrained to ride on their parent atoms. They were treated as riding

Figure 2
The crystal packing of (I). Dashed lines indicate intermolecular hydrogen bonds.
atoms; $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ or $1.5 U_{\text {eq }}$ (methyl C,O). In the absence of significant anomalous scattering effects, Friedel pairs were merged.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

The authors thank the Education Office of Anhui Province, China, for research grant No. 2006kj158B.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker. (1998). SMART (Version 5.628) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.
Qiu, X.-Y., Ma, J.-L., Liu, W.-S. \& Zhu, H.-L. (2006). Acta Cryst. E62, m1289m1290.
Qiu, X.-Y., Yang, S.-L., Liu, W.-S. \& Zhu, H.-L. (2006). Acta Cryst. E62, m1320-m1321.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

